TOSHIBA
 Transistor Inverter

High-performance Inverter TOSVERTTM

VF -ASI

Flexible for you

I need the most suitable inverter for my application, which has low noise, low harmonics,
minimal parameter setting, high torque and control
We meet all your requirements with VF-AS1
It has outstanding Performance, including high torque,
fast response, high accuracy and excellent environmenta compatibility with easy operation.
The VF-AS1 is an advanced inverter
evolved to satisfy all your needs

For your Commercial facilities, offices and factories

- Feature: Reduce high-frequency noise*1, Reduce harmonics*1
- Applications: Washing machines, Treadmill, Showcase refrigerators, Medical equipment, stage equipment

For machinery that requires simple function

- Feature: EASY key, 8 basic parameters
- Applications: Drilling machines, Handling machines, Conveyors, Semiconductor production Equipment, Cutting machines, Woodworking machinery

For machinery that requires high torque and a large capacity

- Feature: Starting torque of $0.3 \mathrm{~Hz}-200 \% * 2$, Up to 500 kw for a 400 V class
- Applications: Cranes, Mining machinery, refrigerator, Presses, Compressers, Crushing machine

For system devices that requires flexibility

- Feature: My function, High-precision and high-speed torque control with or without sensors
- Applications: Process lines, Printing machines, Coilers/uncoilers

Renewal: "Power Removal" safety function*3 Built-in Power Removal safety function which complies with EN954-1 category 3 and IEC/EN61508-1 SIL2.
It saves the installation of a line side or motor side contactor

-1 Depends on the voltage and capacity range
2. When a TOSHIIAA Standard 3 -phasese. 0.4 tio 3 . 7 .kw 4 -pole motor are diven

High-performance Inverter TOSVERT ${ }^{T M}$

For your commercial facilities, offices and factories
For machinery that requires simple function
For machinery that requires high torque and a large capacity For system devices that requires flexibility For machinery that requires expansion
Function Description
Standard specifications

P3 External dimensions
P4 Standard connection diagrams
P5 Terminal functions
55 Terminal functions
P6 For inverter users
P7 Peripheral devices
P9 Built-in options
P10 External options

Function Description	P9	Built-in options	P23
	P10	Externa	P24

For your commercial facilities, offices and factories

This makes the inverter ideal for your electronic applications such as washing machines treadmill, showcase refrigerators for stores, medical equipment, and stage equipment where attention must be paid to peripheral devices.
*1:Photos of machinery are for illustrative purposes only.

For machinery that requires simple function

This makes the inverter ideal for drilling machines, handling machines, conveyors, semiconductor production equipment, cutting machines, and woodworking machinery that require simple function.
*1:Photos of machinery are for illustrative purposes only.

Simple Setup by EASY Key

- In the Quick mode, pressing the EASY key on the panel allows you to operate the inverter by eight basic parameters. When setting each of the functions, press the EASY key to move to the standard mode by one-touch operation. In this mode, you can access all parameters.
- You can customize the Quick mode display, maximum of 32 target parameters are displayed to suit your specific setup requirements.
- You can also use the EASY key as a panel/remote key to switch between panel and remote operation, and as a shortcut key to directly access any specific setup or display screen

High-frequency Noise Reduction

Built-in EMC filter

- High-frequency noise is drastically reduced on models with - High-frequency noise is drastically reduced on models with
built-in noise filters. Built-in noise filters are ideal for sites from commercial facilities and offices through to factories where attention must be paid to peripheral devices.
Compared with filter not integrated models, space and wiring savings have been achieved by incorporating the filter in the panel. Also, models with built-in EMC noise filter comply with the European EMC Directive as individual inverter units.
European EMC Directive : IEC/EN6 1800-3, 1st Environment, C2 ($\left.\begin{array}{c}2000-0.4 \text { to 1.5.5W } \\ 400 \mathrm{~V}-0.75 \text { to } 3.7 \mathrm{FWW}\end{array}\right)$

$$
\begin{gathered}
\text { :IEC/EN61800-3, 1st Environment, C2 } \\
\text { or } \\
\text { IEC/EN61800-3, 2nd Environment, C3 }
\end{gathered}
$$

200 V class models, 0.4 4 07.5 kW : EMI noise filter (complies with the European EMC Directive) builtin standard 200V class modeds, 11 to 45 KW : : Basic noise filter (not complies with the European EMC Directive) builtin standard 400 C class modeds, 0.75 to 7 FkW : EMI noise fitier (complies with the European EMC Directive) built-in standard
400 C class models, 90 to 50 kW : EMI noise fiter (complies with the European EMC Directive) uiltin

Easy Installation, Easy commissioning, and Easy maintenance

Removable control terminal board

Side-by-side installatio

- Side-by-side installation of inverters is possible up to the inverter's total capacity. This allows effective utilization of space inside control panels. Heat sink can be installed outside of the panel as an option.
Removable control terminal board
- A removable terminal board is used. This allows you to use the control wiring when replacing the inverter, which also makes maintenance easier.
ON/OFF control of cooling fan
- Temperature-based ON/OFF control reduces noise while the inverter is being stopped, saves energy and extends the cooling fan's life Monitoring of serviceable parts/alarm output
- The expected replacement cycle of main circuit capacitors, capacitors on control board, and cooling fan is monitored, and an alarm is output when the cycle is reached

For machinery that reguires high torque and a large capacity

This makes it ideals for cranes, mining machinery, refrigerator, presses, compressers, crushing machine and other machinery that require a high torque and large capacity.
*1: Photos of machinery are for illustrative purposes only

For system devices that requires flexibility

This makes the inverter ideal for process lines, printing machines, coilers/uncoilers.
*1:Photos of machinery are for illustrative purposes only.

Excellent Motor Control Performance

- Motor constants required for vector control can be easily set by auto-tuning to enable 1:120 speed control. Moreover, the VFAS1 also features a robust structure that is unlikely to be influenced by motor temperature.
- On inverters provided with a sensor, high-torque operation of $200 \% * 2$ from zero velocity is possible, achieving a speed control range of 1:1000.
- High-speed response frequencies of 40 Hz without sensor and 50 Hz with sensor are achieved respectively, to maintain fixed speed in response to sudden changes in load.
- Modifying software enables high-frequency output up to 1000 Hz , which is ideal for spindle rotation of woodworking and metalworking machinery.
*2: When a TOSHIBA standard 3-phase, 0.4 to 3.7 kW 4-pole motor are driven.

Dedicated Functions Ideal for Lifting Applications

6

Brake sequence/light-load, high-speed functions
-The inverter has two built-in functions, the brake sequence function and light-load, high-speed function, as standard. The brake sequence function measures the timing with braking by an external motor to achieve smooth operation at start and stop of braking operation. The light-load, high-speed function automatically increases the speed when operating light loads according to the lifting load to improve conveyance efficiency. A learning function for setting and storing to memory required parameters while performing actual operations is also provided to facilitate adjustments.
Built-in transistor for dynamic braking
-The VF-AS1 has a built-in transistor for dynamic braking up to 160 kW which makes it ideal for lifting applications.

Customizing by "My Function"

My function

 Number of program steps : 28 Internal relays Internal counters Logic commands| gic commands | : ST, STN, AND,
 ANDN, OR, ORN,
 SET, RSET,
 HOLD
 ON/OFF DELAY TIMER |
| :---: | :---: |
| Data commands | : EQ, NE, GT, GE,
 LT, LE, ASUB |

: 2
: ST, STN, AND, ANDN, OR, ORN HOLD ON/OFF DELAY TIMER LT, LE, ASUB
-With "My function", you can create programs containing up to 28 steps. This achieves logic operations and internal data operations. Parameters can also be set according to analog input and minimum-peak hold of analog outputs. For example:
(Ex.1) Inverter is automatically switched to commercial operation without the external sequence when the inverter is tripped
(Ex.2) A signal is output when torque reaches 120% and frequency is 5 Hz .
(Ex.3) "Forward rotation operation," "preset-speed operation frequency 3" and "No. 2 acceleration/deceleration" are simultaneously turned ON by input on a single terminal.
(Ex.4) The acceleration/deceleration time is changed dynamically by a voltage within the range 0 to 10 V .

8
 Communications and Network

8

RS-485 communications

- RS-485 communications is equipped as standard, and Modbus-RTU protocol is supported in addition to TOSHIBA protocol.
Network options
- Use of communication options enables support of DeviceNet ${ }^{\star 2}$, PROFIBUS and CC-Link ${ }^{\star 3}$ and other main fieldbuses.
Data tracing
- The PCM001Z communications software allows you to edit, monitor, and trace parameter data on a PC, enabling easier data management from inverter startup through to maintenance.

2: DeviceNet is a registered trademark of ODVA (Open DeviceNet Vendor Association)
3: CC-Link is a registered trademark of Mitsubishi Electric Corporation

For machinery that requires expansion

Wide Range of Applications

10
Safety Environmental Compatibility
Ambient temperature $60^{\circ} \mathrm{C}$
Eco Design

The VF-AS1 can be used at a rating up to an ambient temperature of $50^{\circ} \mathrm{C}$ and in environments up to $60^{\circ} \mathrm{C}$ at a derating current.
88% of materials used on the VF-AS1 are recyclable, which design more than meets of the European WEEE (Waste Electrical and Electronic Equipment) Directive of 70\%.

Various Drive Performance

Permanent Magnet Motor (PM) Drive

High-frequency 1000 Hz Output

New DC Braking

The PM is driven efficiently by a TOSHIBA oriented control argorithm to achieve savings in energy and space.

Software modification increases output up to a high frequency of 1000 Hz , making it ideal for woodworking and metalworking machinery

A newly developed DC braking function allows the stop time to a quarter of that on conventional models.

A Further Enhanced of Functions

Multi-PID Control

- Traverse

- Power interruption synchronized control

- Drooping

- Speed gain switching
- Zero speed lock
- Dwell

As well as process-type PID control (e.g. temperature, pressure, flow rate), the VF-AS1 incorporates speed-type PID control that is compatible with speed feedback, for example, in follow-up operation or winding, for line compatibility with line control.

Two extra controls are achieved, traverse control during rewinding that is mandatory on fabric machinery, and power interruption synchronized control for preventing thread breakage when a power interruption occurs.

Drooping distributes the load of 2-shaft drive on conveyance machinery, for example. Speed gain switching enables adaptation to changes in inertia during operation. Zero speed is hold when the inverter is stopped. And dwell controls acceleration/deceleration, for example, when conveying heavy loads.

Basic functions

Each＂setup item＂that determines the control characteristics of the inverter is called a＂parameter．＂ For example，to change the acceleration time，you choose the acceleration time parameter（titled＂RE＂）．

Quick mode（EASY）

To enter the Quick mode，press the
EASY key on the panel．In this mode，you can set eight of the basic parameters．

Standard mode

In this mode，you can set all parameters． For details of parameters，refer to the Instruction Manual．

－Basic parameters

Y－Extended parameters
About 500 extended parameters are available．For details on extended parameters，please visit our web site （http：／／www．inverter．co．jp／）．

Standard specifications

■ Standard specifications（ 200 V class－ 0.4 to $45 \mathrm{~kW}, 400 \mathrm{~V}$ class $\mathbf{- 0 . 7 5}$ to 75 kW model）

200 V class

400 V class

400 V class															
Item	Specification														
Applicable Motor（kW）	0.75	1.5	2.2	3．7／4．0	5.5	7.5	11	15	18.5	22	30	37	45	55	75
Type	VFAS1－														
Form	4007PL	4015PL	4022PL	4037PL	4055PL	4075PL	4110PL	4150PL	4185PL	4220PL	4300PL	4370PL	4450PL	4550PL	4750PL
－3）Output Capacity（kVA）Note 1）	1.8	3.1	4.4	8.0	11	13	21	25	31	37	50	60	72	88	122
	$\begin{gathered} \hline 2.3 \\ (2.3) \end{gathered}$	$\begin{gathered} \hline 4.1 \\ (4.0) \end{gathered}$	$\begin{gathered} 5.8 \\ (4.6) \end{gathered}$	$\begin{aligned} & 10.5 \\ & (8.6) \end{aligned}$	$\begin{aligned} & 14.3 \\ & (13) \end{aligned}$	$\begin{aligned} & 17.6 \\ & \text { (17) } \end{aligned}$	$\begin{aligned} & 27.7 \\ & \text { (25) } \end{aligned}$	$\begin{gathered} 33 \\ \text { (32) } \end{gathered}$	$\begin{aligned} & 41 \\ & (37) \end{aligned}$	$\begin{gathered} 48 \\ (38) \end{gathered}$	$\begin{gathered} 66 \\ (53) \end{gathered}$	$\begin{gathered} 79 \\ (60) \\ \hline \end{gathered}$	$\begin{gathered} 94 \\ (75) \end{gathered}$	$\begin{aligned} & \hline 116 \\ & (93) \end{aligned}$	$\begin{array}{\|c} \hline 160 \\ (120) \\ \hline \end{array}$
Output Voltage	3 －phase， 380 to 480 V （The maximum output voltage is the same as the input voltage．）														
Overload Current Rating	150\％－1 minute														
	Built－in														
Ш凶 Dynamic Breaking Resistor	Compatible with external options														
히릉 Voltage／frequency	3 －phase， 380 to $480 \mathrm{~V}-50 / 60 \mathrm{~Hz}$														
ロ̇シ Allowable Fluctuation	Voltage $+10 \%$－ 15% Note 3）Frequency $\pm 5 \%$														
Protective method	IP20 enclosed type（JEM1030）								IP00 open type（JEM1030）Note 4）						
Cooling method	Forced air cooling														
Cooling fan noise（dBA）	43	43	43	55	56	56	58	60	60	60	64	64	64	64	64
Color	RAL7016														
Built－in Filter	EMI noise filter Note 5）														
DC Reactor	External option								Built－in						

Note 2）Rated output current when the PWM carrier frequency（parameter $[F$ ）is 4 KHz or les
Note 3$) \pm 10 \%$ when the inverter is used continuously（iod 100% ）
Note 4）Inverters 18.5 k W

Note 5）Complies with the Eurpoian EMC Directive
IEC／EN6 $1800-3,1$ ，st environment，category C2 or IEC／EN61800－3， 2 ，2nd environment，category C3
Note 6）Not ocmplies with the European，EMC Directive ：Complies with the Europien EMC Directive．
Core and capacities with oxternal filter（optional ：

Standard specifications

Standard specifications (200 V class -55 to $75 \mathrm{~kW}, 400 \mathrm{~V}$ class -90 to 500 kW model)

200 V class		
Item	Specification	
Applicable Motor (kW)	55	75
Type	VFAS1-	
Form	2550P	2750P
응 Outut Capacity (KVA) Note 1)	84	109
匹ั Output Current (A) Note 2)	221	285
Output Voltage	3 -phase, 200 to 240 V (The maximum output voltage is the same as the input voltage.)	
Overload Current Rating	150\%-1 minute	
	Built-in	
Ш® Dynamic Sreaking Resistor	Compatible with external options	
旡층 Voltage/frequency	3 -phase, 200 to $240 \mathrm{~V}-50 / 60 \mathrm{~Hz}$	3-phase, 200 to $220 \mathrm{~V}-50 \mathrm{~Hz}$ 3-phase, 200 to $240 \mathrm{~V}-60 \mathrm{~Hz}$
Allowable Fluctuation	Voltage $+10 \%-15 \%$ Note 3) Frequency $\pm 5 \%$	
Protective method	IP00 open type (JEM1030) Note 4)	
Cooling method	Forced air cooling	
Cooling fan noise (dBA)	61	72
Color	RAL7016	
Built-in Filter	External filter (optional)	
DC Reactor	Attached DC reactor Note 5)	

400 V class										
Item	Specification									
Applicable Motor (kW)	90	110	132	160	200	220	280	355	400	500
Type	VFAS1-									
Form	4900PC	4110KPC	4132KPC	4160KPC	4200KPC	4220KPC	4280KPC	4355KPC	4400KPC	4500KPC
을 Outut Capacity (KVA) Note 1)	136	164	197	239	295	325	419	511	578	717
¢ั¢ Output Current (A) Note 2)	179	215	259	314	387	427	550	671	759	941
Output Voltage	3 -phase, 380 to 480 V (The maximum output voltage is the same as the input voltage.)									
Overload Current Rating	$150 \%-1$ minute									
$\begin{array}{l\|l} \hline \text { 은 } & \text { Dynamic } \\ \text { By } & \text { Braking Circuit } \\ \hline 0 \end{array}$	Built-in				Compatible with external options					
Ш¢ Dynamic Breaking Resistor	Compatible with external options									
	Note 6)	3-phase, 380 to $440 \mathrm{~V}-50 \mathrm{~Hz}$ 3-phase, 380 to $480 \mathrm{~V}-60 \mathrm{~Hz}$								
-¢ Allowable Fluctuation	Voltage $+10 \%-15 \%$ Note 3) Frequency $\pm 5 \%$									
Protective method	IP00 open type (JEM1030) Note 4)									
Cooling method	Forced air cooling									
Cooling fan noise (dBA)	61	72	73	73	76	76	76	76	76	78
Color	RAL7016									
Built-in Filter	EMI noise filter Note 7)									
DC Reactor	Attached DC reactor Note 5)									

Note 1) Capacity is calculated at 220 V for the 200V models and at 440 V for the 400 V models.
Note 2) Indicates the value when the PWM carrier frequency (parameter $[\mathcal{T}$) is 2.5 kHz or less.
When low noise (PWM carier frequency 8 kHz) is required at 18.5 kW or more, use an inverter of capacity one rank higher than the motor capacity.
Note 3) 10% when the inverter is used continuuusly (load of 100%)
Note 4) Inverters, 18.5 FW or greater, do not have wiring port covers.
Thert covers. They have large openings, but there is no space to bend the external cables inside the unit. If they are fitted
external to the cabinet, please use an optional wiring port cover.
Note 5) For $200 \mathrm{~V}-55 \mathrm{~kW}, 400 \mathrm{~V}-9 \mathrm{KW}$ or larger model, be sure to install DC reactor.
However, this is unnecessary for DC input specifications.
Note 6) Three-phase $380-480 \mathrm{~V}$-50/60Hz for 4900 PC
Note 6) Three-phase $380-480 \mathrm{~V}-50 / 60 \mathrm{~Hz}$ for 4900 PC
Complies with the European EMCD Directive
IEC/EN661800-3, 2nd environment, category C

Common Specifications

tem			Specification	
Contros ssitem			Sinsosidal PWM contol	
Output totage a			Main circuit tolage feedtack contol. Switchate	
Output treuuncy range				
hg seps of treauency				
Fiequency accuracy				
Votageffereueney characeierisics				
	Freuueny seting signal		$3 k$ potentiometer (possible to connect to 1 to $10 k \Omega$ rated potentiometer) V Vc (input impedance Zin: 30k 0 to $\pm 10 \mathrm{Vdc}$ (Zin: $22 \mathrm{k} \Omega$) 4 to 20mAdc (Zin:242ת)	
Terminal board base treuu			input: optional)	
$\frac{\text { Frequency iump }}{\text { Upene and lower inititrauencicies }}$			3 Places. Seting of fiup tequenery and widh.	
	\bigcirc		$200 \mathrm{~V}-45 \mathrm{~kW}$ or less, $400 \mathrm{~V}-75 \mathrm{~kW}$ or less : adjustable between 1.0 to 16 kHz	
$\frac{\text { PID contiol }}{\text { Toque ontol }}$				
			Voltage command inut speatifation: DC O Oto 10 V	
Acceeleationdeecelearaion time			0.01 to 6000 sec . Selectable from among acceleration/deceleration.times 1, 2, 3 and 4 . Automatic acceleration/deceleration function. S-pattern acceleration/deceleration 1 and	
DC braking				
Fomadr tunfeevese ren Note 1)			With F-CC closed to forward run, with R-CC closed to reverse run, with both closed to stop. With ST-CC opened to coast stop. Emergency stop by panel operation or terminal	
(1e 1)			Jog mode, if selected, allows jog operation from the operation panel Jog run operation by terminal board is possible by setting the parameters.	
Presel speed opeation Note 1)			By changing the combination of open/close between S1, S2, S3, RR/S4-CC, set frequency +15 -speed operation Selectable between acceleration/deceleration time, torque limit and V 1 by set frequency.	
Rety				
Sots tall			Automaic load reduction contol at overioading. (Pefautio OFF)	
			The coosing tan will be stopeed automatially to assure ong yife wen unmeessary.	
			Key probibition selectable beween Stop key only, Mode key only, etc. All key opeations can be porobited.	
Regenerative power ide-trough oontol				
Autorestatat pepation				
			Possbib to swith opeation by commercial power source or inverer	
Light-iad highs.speed operation				
	Ovemide tuncion			
Protective tunction			Stall prevention, current limit, overcurrent, overvoltage, short circuit on the load side, ground fault on the load side (Note 5), undervoltage, momentary power failure (15ms or more) resistance, fin overheat, emergency stop omentary power failure overload protection, arm overload at starting, overcurrent on the load side at starting, overcurrent and overload at dynamic braking	
	Electoo	sitic		
	Reset			
		Alams		
		Caws	Overcurrent, overvoltage, fin overheat, short circuit on the load side, ground fault on the load side, inverter overload, arm overcurrent at starting, overcurrent on the load side at starting EEPROM error, RAM error, ROM error, transmission error, (dynamic braking resistor overcurrent/overload), (emergency stop), (undervoltage), (low current), (overtorque), (motor overload), (output phase failure) The items in the parentheses are selectable.	
		Wonioning tunction	 Motor counter pseudo PG, position pulse, RR input, VIIII input, RX input, RX2 input, FM output, AM outpu EEPROM version,	
		Friee unitidsplay	spay	
		Automatie eid tunctio	Seaches automitally parameiers that are difterent tom the standarad default seting parameters. Easy to tind changed paameneers.	
		User defauts seting		
Imputuotuput temminal input inocrion			Display main airuut capactior charing.	
Sinkssucres suitering				
			$1{ }^{1 / 2}$ contacat output	
C. Upper/lower limit frequency signal output $\stackrel{\text { On }}{5}$ Note 2) 			Open collector u urut (2)	
	O. $\begin{array}{l}\text { Output for frequency meter/output for ammeter } \\ \text { Note 3) }\end{array}$			
	Pusse train tequency yutur			
muparaiot unction				
	Stioage teme	eature	-250 $0^{\circ}+7^{\circ} \mathrm{C}$	
	Reative hum		${ }^{20} 50.939 \%$ (fiee fom ondidenation)	

Note 1) 16 contact input terminals (of which 8 are opioions) are programmable contact input terminals, and they make it possible to arbitrarily select trom 136 types of signals.

Note 4) When using inverters where the ambient temperature will ise above 50° C, remove the upper cover and operate each inverter at a current tower than the rated one Note 5) This function protects inverters from overcurrent due to output circuit ground fault.

External dimensions

200 V class -0.4 to $55 \mathrm{~kW}, 400 \mathrm{~V}$ class -0.75 to 90 kW model

FigureJ

Figure 1

Input Voltage	$\begin{gathered} \text { Applicable Motor (kW) } \\ \hline \end{gathered}$	Inverter Type	Dimensions (mm)					External	$\begin{gathered} \text { Approx. Weight } \\ (\mathrm{kg}) \end{gathered}$
200 V	0.4		${ }_{130}$	230	${ }_{152}$	114	220	A	
	0.75 1.5	VFAS1-207PL							${ }_{3}$
	2.2	VFASS 1 -2022PL	155	260	164	${ }^{138}$	249	B	4
	3.774.0	VFAS 1 -2037PL							
	${ }_{7.5}^{5.5}$	VFASAS-2055PL	175 210	${ }_{295}^{295}$	164 191	158 190 190	${ }_{283}^{283}$	${ }_{\text {D }}$	${ }_{7.5}^{5.5}$
	11	VFAS $1-2110$ PM	230	400	191	210	386	E	14
	${ }_{18}^{18.5}$	VFASSS1-2150PM							
		VFAS 1 -2202PM	240	420	${ }^{212}$	206	403	F	21
	30	VFAST-2300PM							41
	$\begin{array}{r}37 \\ 45 \\ \hline\end{array}$	VFAS1-2370PM	320	550	${ }^{242}$	280	525	H	41
	55	VFASAS-2550P	310	680 (920)	370	250	650	${ }_{\text {J }}\left({ }^{\text {a }}\right.$	
	0.75	VFASI-4007PL							3
	1.5	VFASS 1 -4015PL	130	230	152	114	220	A	3
	${ }_{3.74 .0}^{2.2}$	VFFAS 1 -0037PL	155	260	164	138	249	B	${ }_{4}^{3}$
	5.5	VFAST-4055PL	175	295	164	158	283	c	5.5
	7.5	VFASS1-4075PL						c	5.5
	11	VFASS1-4110PL	210	295	191	190	283	D	8
400 V	${ }_{18}^{18.5}$	VFAAS 1 -41450PL	230	400	191	10	386	E	${ }_{13}^{16}$
	${ }^{22}$	VFAST-4220PL	240	420	212	206	403	F	${ }^{21}$
	30 37	VFASS 1 - 4 -430PL	240	550	242	206	529	G	29 29
	45	VFASS 1 -4550PL							48
	55	VFAS1-4509L	320	630	290	280	605	,	${ }_{48}^{48}$
	90	VFASS1-4900PC	310	680 (920)	370	250	650	J(J)	59 (89)

External dimensions

$\square 200 \mathrm{~V}$ class $-75 \mathrm{~kW}, 400 \mathrm{~V}$ class -110 to 500 kW model

$\begin{gathered} \text { Input Voltage } \\ \text { Class } \end{gathered}$	$\begin{aligned} & \text { Applicable Motor } \\ & \text { (kW) } \end{aligned}$	Inverter Type	Dimensions (mm)									$\begin{aligned} & \text { External } \\ & \text { Dimension } \\ & \text { Drawing } \end{aligned}$	$\mathrm{Approx}_{(\mathrm{kg})}^{\text {Aligh }}$
			w	H	D	W1	H1	W2	H2	н3	H4		
200 V	75	VFAS 1-2750P	350	$\begin{array}{\|c\|} \hline 782 \\ \hline(1022) \\ \hline \end{array}$	370	298	758	360	72	150	30	$\begin{gathered} \mathrm{K} \\ \left(\mathrm{~K}^{\prime}\right. \end{gathered}$	$\begin{gathered} 72 \\ (103) \\ (103) \end{gathered}$
400 V	110	VFAS 1-4110KPC	350	$\begin{gathered} 782 \\ \hline(1022) \end{gathered}$	${ }^{370}$	298	${ }^{758}$	360	72	${ }^{150}$	30	$\begin{aligned} & \hline K \\ & \left(k^{\prime}\right) \end{aligned}$	$\begin{aligned} & 74 \\ & (108) \\ & \hline \end{aligned}$
	132	VFAS1-4132KPC	330	$\begin{gathered} 950 \\ \hline(1190) \end{gathered}$	370	285	920	340	75	150	30	$\begin{aligned} & L \\ & \left(L^{\prime}\right) \end{aligned}$	$\begin{gathered} 82 \\ (118) \\ \hline \end{gathered}$
	160	VFASI-4160KPC	430	$\begin{gathered} 950 \\ (1190) \end{gathered}$	370	350	920	440	75	150	30	$\begin{aligned} & \text { M } \\ & \left(M^{\prime}\right) \end{aligned}$	$\begin{aligned} & 104 \\ & (161) \\ & \left(\begin{array}{l} 2 \end{array}\right) \end{aligned}$
	200	VFAST-4200kPC	585	$\begin{gathered} 950 \\ (11190) \end{gathered}$	370	540	920	595	75	150	30	$\stackrel{N}{\text { (}}$)	$134(194)$
	$\begin{aligned} & 2202 \\ & 280 \\ & 280 \end{aligned}$	VFAS1-4220KPC											${ }^{136}$
	355	VFASS--4355PC	880	${ }_{\substack{1150 \\(1390)}}$	370	418	1120	890	75	150	30	(0)	(260)
	400	VFASI-4400KPC											
	500	VFAS1-4500kPC	1108	$\begin{gathered} 1150 \\ (1390) \end{gathered}$	370	${ }^{53}$	1120	1120	75	150	30	(P)	${ }_{\text {(462) }}^{330}$

Standard connection diagrams

Standard connection diagram Sink logic (common : CC)

Standard connection diagram Source logic (common : P24)

in circuit power supply

200 V Class: $\quad 3$-phase, 200 to $240 \mathrm{~V}-50 / 60 \mathrm{~Hz}, ~$ 400V class:
0.75 to 90 kW 3-phase, 380 to $240 \mathrm{~V}-50 / 60 \mathrm{~Hz}$

*1 : The inverter is shipped with the terminals PO and $\mathrm{PA}+$ + shorted with a bar (200V-45 kW or amaller, 400V-75kW or smaller).
Remove this shoring bar when instaling a DC reactor (DCL). For $200 \mathrm{~V}-5 \mathrm{KWW}$ or more, and $400 \mathrm{~V}-90 \mathrm{KW}$ or more models, be sure to instal the DC rector.
$* 3$: The noise filter is built in for models $200 \mathrm{~V}-45 \mathrm{~kW}$ or smaller and all of 400 V .
4. External braking resistor (Ooption). Dynamic braking drive a ircuit built-in (GTT7T), sas standard for models 160 kW or smaller.

5 : Power generation braking Unit (option).when the exterral braking resistor (optional) is used on 200 kW or more models, the separate power braking unit (optional) is required.
*7: If want to use DC power supply to operate the inverter (200V: 18.5 KW or more, $400 \mathrm{~V}: 22 \mathrm{~kW}$ or more), be s.
your supplier customer support center, because an inrush current imiting circuit is required in such a case.

*8: For models 200V-75KW and $400 \mathrm{~V}-110 \mathrm{KW}$ or larger, three-phase power input is necessary to drive the fan if y
$* 9$: The functions asigned to terminals OUT1. VIII and RR/S4 can be swiched by changing parameter settings.
*10 : To supply control power trom an external power supply for backing up the control power suppled from the inverter. an
optional control power backup device (CPSOO2z) is required, histha case, the backup device is sused at the same time with the
*11 : The rating of $4000-3555$ to 500 kWW have the double e ermininals of RLL 1 , SLLL, TLT3 for power input, and PO for DC reactor. Please refer the following figure for the wiring.

Terminal functions

■ Main circuit terminal

Terminal Symbol	Terminal Function
Grounding terminal for inverter casing	

Control circuit terminal

Terminal Symbol	Inpu	Function	Electrical Specifications
F	Input	Shorting across F-CC causes forward rotation; open causes deceleration stop. (Across ST-CC is short state.)	Voltage free contact input $24 \mathrm{Vdc}-5 \mathrm{~mA}$ or less Lan current signal. Choose low current contacts to avoid poor attaching.
R	Input		
RES	Input	O O On Shorting and then opening RES-CC cancels the status held by an inverter protective function. When the inverter is operating normally shorting and then opening RES-CC produces no effect	
S1	Input	은 Shorting across S1-CC causes preset speed operation.	
S2	Input	. Shorting across S2-CC causes preset speed operation.	
S3	Input	S Shorting across S3-CC causes preset speed operation.	
RR/S4	Input	黄 $\begin{aligned} & \text { SW3: When SW4 is in the } \mathrm{S} 4 \text { position, } \mathrm{S} 4 \text { and } \mathrm{CC} \text { are shorted and preset speed operation } \\ & \text { is selected }\end{aligned}$ is selected.	
P24PLC	Output	24 Vdc power output (when SW1 is in any position other than PLC) 24 V internal output terminal	Vdc-200mA
	Input	If SW1 is turned to the PLC position, this terminal can be used as a common terminal when an external power supply is used.	-
CC^{+1}	Common to input output	Digital signal equipotential (OV) terminal for the control circuit and equipotential (OV) terminal for an optional control power supply backup.	-
PP	Output	Analog input setting power output If P24/PLC and PWR are short-circuited, the motor is put into a standby state. And if the circuit between them is opened, the motor coasts and stops. These terminals can be used for interlock This terminal is not a multifunction programmable input terminal It is a terminal with the power removal safety function that complies with EN954-1 category 3 and IEC/EN61508-1 SIL II.	10 Vdc (Perrmssible load current:10mAdc)
PWR ${ }^{2}$	Input		Regardless of the setting of SW1 ON : DC17V or more (FFF: Coast stop)
RR/S4	Input	SW3: Multiunction programmable analog input terminal when SW4 is in the RR position. Standard defaut setting:0 0 OVdc input and $0-60 \mathrm{~Hz}$ frequency. Multifunction programmable analog input.Standard defaut seting: 0-10Vdd input and $0-60 \mathrm{~Hz}$ frequency. This terminal can also be used as a $4-20 \mathrm{mAdc}(0-20 \mathrm{mAdc})$ input terminal, if the parameter F i 18 set to 1	10Vdc (Internal impedance:30 k 2)
VIII	Input		10 Vdc (Internal impedance:30 $\mathrm{k} \Omega$) 4~20mA (Internal impedance:242 Ω)
RX	Input	Multifunction programmable analog input. Standard default setting:0~さ10Vdc input and $0 \sim \pm 60 \mathrm{~Hz}$ frequency.	1 OVdc (Internal impedance:22 K)
FM	Output	Multifiunction programmable analog output. Standard defaut setting: output frequency Connect a 1 mAdc full-scale ammeter or 7.5 Vdc (1 (1VVdc)- mA full-scale voltmeter. This terminal can also be used as a 0 -20mAdc ($4-20 \mathrm{~mA}$) terminal, it the parameterf 58 s set to 1 and the SW2 switch is set to OFF.	1 mA full-scale DC ammeter or $7.5 \mathrm{Vdc}-1 \mathrm{~mA}$ full-scale DC voltmeter $0-20 \mathrm{~mA}(4-20 \mathrm{~mA})$ Full-scale DC Full-scale DC ammeter
AM	Output	Multifunction programmable analog output. Standard default setting: output curren Use this terminal to connect a 1 mAdc full-scale ammeter or 7.5 Vdc (10 Vdc)-1mA full-scale voltmeter.	1 mA full-scale DC ammeter or 7.5 Vdc - 1 mA full-scale DC volmeter
out1	Output	Multifunction programmable open collector output. The default setting is to output a signal when output low speed threshold has been reached. Depending on the SW4 setting, pulses are output with frequencies of 1.00 kHz to 43.20 kHz . Standard default setting:3.84kHz	Open collector outpu 24Vdc-50mA
OUT2		Multifunction programmable open collector output. By default, it is set to output a signal indicating the completion of acceleration or deceleration.	
No		Digital output signal equipotential (0) terminal for the control circuit.t Itis insulated from the CC terminal.	
CCA ${ }^{+1}$	Common tot	Analog inputoutput signal equipotential (OV) terminal for the control circuit.	- -
+SU	Input	DC power input terminal for operating the control circuit. Connect a control power backup device (optional) between +SU and CC.	Voltage:24Vdat $\pm 0 \%$ Use a power supply with a current rating of 1.1 A or mo
$\begin{aligned} & \text { FLA } \\ & \text { FFB } \\ & \text { FLC } \end{aligned}$	Output	Relay contact output. Contact rating Used to detect the activation of the inverter's protective function. Contact across FLA-FLC is closed and FLB-FLC is opened during protection function operation.	

For inverter users

When studying how to use our inverters

Notes

-eakage current
This inverter uses high-speed switching devices for PWM control When a relatively long cable is used for power supply to an inverter, current may leak
from the caboe or hhe motor to the ground because of its capacitance, adversely
totectin aftecting peripherala equipment. The intensity y f such a leakage current depends on the PWM carrier requency, the lengths of the input and output cables, etc., of the
inverter. To prevent current leakage, it t recommended to take the following measures.
[Effects of leakage current]
Leakage current which increases when an inverter is used may pass through the
following routes: following routes
Route (1) \ldots.

Leakage due to the capacitance between the ground and the noise filter Route (2)... Leakage due to the capacitance between the ground and the inverter oute (3)... Leakage duu to the capacitance between ground and the cable connecting
Route (4)... Leakage due to the capacitance of the cable connecting the motor and an inverter in Route (5).... Leazakege through the grounding line common to motors
Route (5)...Leakage through the grounding line common to motors
Route (6)... Leakage to another ine because of the capacitance of the ground
Route (6)...Leakage to another line because of the capacitiance of the ground
Leakage current which passes through the above routes may cause the following
trouble
Lrouble.
-Maltunc

- Maltunction of
distriubution line
ground-relay installed in the same or another power distribution
- Noise produced at the output of an electronic device in another power
distribution line distribution line
- Activation of an external thermal relay installed between the inverter and the
motor, at a current below the rate current

Leakage current flow routes
[Measures against effects of leakage current]
The measures against the effects of leakage current are as follows:
(1) Decrease the enw the mafiturction of leakage iricuit breakers
(2) Use radio-frequencoy interferencency of the inverter. Nooe)
(2) Use radio-frequency interference-proof EECBE as ground-fautl interupters in
not only the system into which the inverter is incorporated but also toter not onty the system into which the inverter is incorporated but also other
systems. .hnen ELCCs are used, the PWM carrier frequency needs to be
increased to operate the inverter. increased to operate the inverter.
(3) When connecting mutiple invertes
3) When connecting multiple inverters to a single ELCB, use an ELCB with a
high current sensitivity or reduce the number of inverters connected to the
ELCB.

2) Measures against malfunction of ground-faut relay:
(2) Install ground-faum carrier riays wiequency o o the the inverter. Note)

Toshiba CCR12 type of relays) in both the same and other lines. When ELCBS are used, ther
inverter.
恠 carrier frequency needs to be increased to operate the
3) Measures against noise produced by other electric and electronic systems:
(1) Separate the grounding line of the inverte r rom that of the affected electric
and electronic systems.
(2) Decrease the PWM carrief frequency of the inverter. Note)
4) Measures against maltunction of external thermal relays: the invertrer instead of it. (Unapplicable to cases where a single inverter is
used to drive more than one motor. Refer to the instruction manual for used to drive more than one motor. Refer to the instruction manc)
measures to be taken when thermal relays cannot be removed.)
5) (2) Decrease the PWM carrier frequency of the inverter. Noel)
5) Measures by means of wiring and grounding
(1) see grounding wire as large as possible
(2) Separate the inverter's grounding wire from that of ther systems or install the
grounding wire of each system separately to the grounding pooms.
(3) Ground (shield) the main circuit wires with meatlic conduits.
(3) Ground (shield) the main circuit wires with metallic conduits.
(4) Use the shortest possible cables to connect the inverter to the moto
(5) It the inverter has a high-attenuation EMI fiter, turn off the grounding capaction
detachment switch to reduce the leakage current. Note that doing so leads to a delachment switch to reduce the leakaç
reduction in the noise attenuating effect.
Note) In the ase of thisi ivereter, the PwM carierie frequency can be decreasese to 1.0 KHHz .

Ground fault
Sefore begining operation, thoroughly yheck the wiring between the moto and the
hiverter for incorrect wiring or short circuits. Do not ground the neutral point of any star-connected motor.
Radio interference
 earby instrumental devicics, electrical and electronic systems, etc. The effectis of noise greaty vary with the noise resistance of each indi
condition, the distance between it and the inverter, etc.
IMeasures against tioises
According to the oute throug
According to the route through which noise is transmitted, the noises produced by an TExamples of protective measures]
Separate the power line from other lines, such as weak-current lines and signa
lines, and install them apart trom each other.
Instail I noise fiter in each inverter. It is effective for noise prevention to install noise filters in other devices and systems, as well.
Shield cables and wires with grounded metallic conduits, and cove
systems with gronded meatilic cases.
Separate the systems.
Instal the
Use shiel inf and output cables of the inverter apart from each other. and shielded twisted pair wires for wiring of the weak-current and signal circuits, -Ground the inverter with groand priain of wires.
separately trom thes ath large and short as possible, separately from other devices and systems.
On 200 V 0.4 to 7.5 kW and 400 V 0.7 kW to 500 kW models, noise can be greatly reduced as they have a built-in EMI noise filter on their input side.

Power factor improvement capacitors
o not install a power factor improvement capacitors on the input or output side of he inverter.
Instaling a power factor improvement capacitor on the input or output side causes current containing harmonic components to flow into the capacitor, adverse
affecting the capacitor itself or causing the inverter to trip. To improve the pow actorn, install an input AC reactor or a DC reactor (optional) on the primary side o he inverter
Installation of input AC rectors
These devices are used to improve the input power factor and suppress high
harmonic currents and surges. Instal an input AC reactor when using thi inverter
harmonic currens and surges.
under the etolowing ocnditions
(1) When the power source capaity is 500 kVA or more, and when it is 10 times
more greater than the inverter capacity.
(2) When the inverter is connected the same power distribution system as a
(3) Whyistor-com Mitited control equipment.
(3) distorted wave-producing systems, such as arc furnaces and large-capacity
inverters.

When wiring the inverter

Wirigg peeatulums

Installing a molded-case circuit breaker [MCCB]
(1) Install a molded-case circuit breaker (MCCB) on the inverter's power supply
input to portect the wiring.
(2) Avoid turning the molded-case circuit breaker on and off frequently to turn on/off
the motor
the motor.
(3) To turn on/fft the motor frequently, close//reak the control terminals F (or R).
Installing a magnetic contactor [MC] [primary side]
(1) To prevent an automatic restart atter the power interuption or overload relay has
triped, or actuation of the protective circuit, instal an electro-magnetic contact in (2) The inverter is provic

The inverter is provided with a failure detection relay (FL), so that, if its contacts are connected to the operation circuit of the magnetic contactor on the primary
side, the magnetic contactor will be opened when the protective circuit of the side, the magnetic
inverter is activated.
(3) The inverte can
(3) The inverter can be used without a magnetic contactor. In this case, use an
MCCB equipead when (equipped with a voltage tripping device) for opening the primary circurt (4) Avoid turning the magnetic contactor on and off frequently to turn on/oft the
motor.
(5) To turn on/off the motor frequently, closelbreak the control terminals F (or R
Installing a magnetic contactor [MC] [secondary side]
(1) As a rule, if a magnetic contactor is installed between the inverter and the motor,
do not turn of ONOFF while running. (If the secondary-side contactor is turned of do not turn of ON/OFF while running. If the secondary-side contactor is sturned of
ONOFF while running, a large current may flow in the inverter, causing inverter damage and failure.)
(2) A magnetic contactor may be installed to change the motor or change to the
commercial powers source when the inverter is stopeed. Always use an interlock with the magnetic contactor in this situation so that the commercial power supply
is not anplied to the inverter's ontput terminals.

External signa
(1) Use a relay rated for ow currents. Mount a surge suppressor on the excitation coil of the relay
(2) When wiring the control circuit, , use shielded wires or twisted pair cables. Because all of the control terminals except $F L A$ A $F L B$ and $F L C$ are connected to contract with the main miricul

Installing an overload relay
(1) The inverter has an electronic-thermal overload protective function.
However in the foflowing cases, the thermal relay operation level ive function.
ion level must be ajusted
must be installed or an overoad relay matching the m.
between the inverter and the motor.
(a) When using a equivalent.
(b) When driving several motors simultaneously.
(2) When using the invertrer to control the operation of a constant-toraue motor (VF motor), change the protective charar
according to the setting of the F F motor
(3) In order to adequately protect a motor used for low-speed operation, we
recommend the use of a motor equipeded with a embedded thermal relay

When changing the motor speed

Application to standard motors

Vibration
When a motor is operated with an industrial inverter, it experiences more vibration
than when it is operated by the commercial power supply The vibration cin reduced to a negligible level by securing the motor and machine to the base firm If the base is weak, however, the vibration may increase at a light load due to
Roduclion rer hat
Note that the lubrication capabiility of a reducer or a converter used as the interface Note that the lubrication capabiitit of a reducer or a converter u us.
ot the motor and the load machine may affected at low speeds.
. When operating at a trequencieies exceeding 60 Hz or higher, power transmission mechanisms such as reduction gear, belts and chains, may cause problems suct

Frequency
Betore setting the maximum frequency 1060 .

Application to special motors

Braking motor
When using a braking motor, it the braking circuit is directly connected to the inverters's output terminals, the brake cannot be released because of the lowered
starting voltage. Thereforore, when using a braking motor, connect the braking circul to the e inverter's power supply side, as shown on the below. Usually, braking motors
produce larger noise in low speed ranges. produce larger noise in low speed ranges.

Gear motor
When using an industrial inverter to drive a gear motor, inguire of the motor
manutacturer about its continuous operation range, since ow-speed operation manulacturer about its continuous operation
gear motor may cause insufficient ulubrication.
Toshiba Gold Motor (High-efficiency power-saving motor) Inverter-driven operation of Toshiba Gold MOtors is the best solution for saving
energy. This is because these motors have improved efficiency, power tactor, and noise/vibration reduction characterisitics when compared to standard motors.
Pole-changing motor
Pole-changing motors can be driven by this inverter. Before changing poles,
Hight-pole-count motors
Note that hight-pole count motors(8 or more poles), which may be used for Note that hight-pole count motors(8 or more poles), whic
tans,et., have higher rated current than 4-pole moters.
The current ratings of multipole motors
The current ratings of multipole motors are elelatively high. So, when selecting an
inverter, you must pay special attention to its current rating so that the current rating inverter, you must pay special attention tor
of the motor is below that ot the inverter.
Single-phase motor
Because single-phase motors are equipped with a centritiugal switch and capacitors
for starting forstaring, they cannot be driven by an invertrer. If only y single-phase, power
system is availabs a a 3 -phase motor can be driven by using a single-phase input interter to convert
motor are required.

For inverter users

Selecting peripheral and wiring sizes devices

Number ct tabose com

Peripheral devices

Selecting the Capacity (model) of the Inverter

selection

\qquad

 Seciticaly tor use winh iveneres
tatring haracteristics

- Built-in options

No	Name	,	
	Exanded teminal lock card	This oplion is convenient foradiding on special tuncions. (Tyee: ETB0037, ETP0047)	
-	CC-Link communicaioios sard		
	Devienete communiciaios card		P23
	Profilus communiciatos cad		
	PG feedback card (complimentary output/li	Highe	

■ External options

-	nput AC reac	This is used to improve the input power factor of the inverter power supply, reduce harmonics Install this option when the power supply capacity is 500 kVA or more and the power supply capacity is 10 times or more than that of the inverter's capacity, or when a distortion-generating source such as a thyristor or a large-capacity inverter is connected to the same The effect of this option changes according to the impedance of the reactor. Consult us separately for details.				
			Peneratator			
		Rea	Over			
		The DC reactor is more effective than the input reactor in improving the power factor. Werecommend joint use of the input reactor, that is effective in suppressing external surges, when facilities where the inverter is to be applied require high reliability				
©	${ }_{\text {lor }}$	This high-attenuation type EMC noise filter takes up little space, and adopts a system (foot mount or side mount) that moun Capacity class models).				
©	emp plate	A steel plate used to connect shielded earth wires from inverter's power cables or to connectearth wires from external devices. Some models have it as a standard attachment or as anoption. option.				
-	Braning resiso Brakig unit					
(8)	Motor-end surge voltage suppression filte (400 V types V types only)					
	(Conto power supply	Control power need not be input separately as itis supplied internaly on the inverter from the main circuit power supply. Use this option when bac Use tis option when backing up only by the control power supply when the main circuit is shut off. This is +24 VDCC output common to both 200 and 400 V models. (Model : CPP 50227)				
(1)	ceommuniation	This unit is connected to a PLC or a computer to enable data communications. By connecting the connector cable, parameters can be easily adjusted, and data easily saved and written. USB001Z)				
(1)	Commuincaions able	Connector cable for USB conversion unit and LED remote keypad. (Model : CAB0011, CAB0013, CAB0015)				
	LCD cable					
	$\begin{aligned} & \hline \text { LED remote keypad } \\ & \text { (w/ parameter writer function) } \end{aligned}$	LED remote keypad is for extension. It is provided with an LED display, RUN/STOP key UP/DOWN key, monitor key, and enter key. Setup parameters for three inverters can b stored to this unit. (Model : RKP002Z)				
(6)	Heatsinoutuside porusuon onoion	This alows heat generated inside panels to be reatuced.				
	Operation panel					

Harmonic current and influence to power supply

 Harmonics are defined as sinusoidal waves that is multiple frequency of ommercial power (base frequency: 50 Hz noluding harmonics has a aistorted waveform. ectifying and smoothing circuits on the input side. Harmonics produced by es in some cases (for example, overheating of phase advancing capacitors and reactors.

Built-in options

Here are the internal devices optionally available. There are two types of optional devices: Add-on type and Plug-in type
Table of optional devices

Function of Expansion I/O card

Model	ETB003z ETB004z	
Multifunction programmable contact input	Multiunction programmable contact input: : 4 points ON: Less than 10Vdc oN: 11 Vdo or more OFF: $16 V \mathrm{Vdc}$ or more OFF: Less than SVdd	
Multifunction open collector output	Multifunction programmable open collector output : 2 points Driving current: Max. 50 mA when an external power source is used Max. 20 mA when the (nternal power sou)Driving voltage: 12 V (min) to 30 V (max)	
Multifunction programmable relay contact output	C contact configuration $250 \mathrm{Vac}-2 \mathrm{~A}(\cos \phi=1), 250 \mathrm{Vac}-1 \mathrm{~A}(\cos \phi=0.4), 30 \mathrm{Vdc}-1 \mathrm{~A}$	
	Disable	Current input: 20mA or less Voltage input: Differential voltages 5 V or less, -10 V or more, +10 V or less
Analog input	Disable	Current input: 20 mA or less Voltage input: 0 V to 10 V
Monitor output	Disable	Voltage output: -10 V to $10 \mathrm{~V}, 0 \mathrm{~V}$ to 10 V Current output: 0 mA to 20 mA
Pusse train input	Disable	Input pulse specifications Voltage: Max. 5V Current: Max. 15mA Duty: $50 \pm 10 \%$ Frequency: Max. 30 kHz
$\begin{aligned} & \text { External thermal trip } \\ & \text { input } \end{aligned}$	Resistance between TH+ and THError: Approx. 50Ω or less or approx. $3 \mathrm{k} \Omega$ or more Recovery from error: Approx. 1.8k Ω	
24 V power output	24 Vdc -60mA max	
-10 V power output	-10Vdd -10mA	
Contact input common terminal	Common terminals for contact input	

How to instal

Add-on type devices and inserion type devices are ins
Instal them correctly, as shown in the tigures below.

Function of PG feedback card

Dimension of depth that installed option

eepending on the capacity, the installation of an Add-on type device may increase
the depent of the inverter.
200 V 0.4 to $45 \mathrm{KW} / 400 \mathrm{~V} 0.75$ to 37 kW

400 V 45 to 75 kW

200V 5, 7 , $5 \mathrm{~kW} / 400 \mathrm{~V} 90$ to 500 kW
Note) The inverters of these capacities come equipped with an Add-on type option case as standard.
When installing an opional Addon type device, remove the case

External options

$\begin{aligned} & \text { Voltage } \\ & \text { class } \end{aligned}$		Inverter model	$\begin{aligned} & \text { Inpout AC } \\ & \text { reactor } \\ & \text { (eACL) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { DC reactor } \\ & \text { (DCL) } \\ & \text { Note } 4) \\ & \hline \end{aligned}$	EMC Directive compliant noise reduction filter	Braking resistor Note 1), 2)	Motor end surse suporetassion filter
$\begin{aligned} & \text { coovv } \\ & \text { class } \end{aligned}$	0.4	VFASI-2004PL	PFL-2005s	DCL-2007	Built-in		-
	0.75	VFAS1-2007PL				PBR-2007	
	1.5	VFASI-2015PL	PFL-2011s	DCL-2022		PBR-20г2	
	3.7/4.0	VFASI-2037PL	PFL-2018S	DCL-2037		PBR-2037	
	5.5	VFASI-2055PL	PFL-2025S	DCL-2055		PBR3-2055	
	7.5	VFAS1-2075PL	PFL-2050S	DCL-2110		PBR3-2075	
	11	VFASI-2110PM	Pf-2050s	Built-in	EMF3-4072E	PBR3-2110	
	$\frac{15}{18.5}$	VFASI--2150PM	PFL-2100s			PBR3-2150	
	22	VFASI--2220PM			EMF3-4090F	PBR3-2гго	
	30 37	VFASI--2300PM	PFL-2150s		EmF3-4180H		
	45	VFASII-2450PM	PFL-2200s			PBR-222W002	
	55	VFAS 1-2550P	PFL-2300S	Attached as standard	EMF3-4300\|		
	75	VFAS 1-2750P	PFL-2400s			DGPG60W-B1 [DGFGOOW-C1]	
400 Vclass	0.75	VFAS 1-4007PL	PFL-4012S	$\underbrace{\text { cee3 }}_{\substack{\text { DCL-2007 } \\ \text { Note 3) }}}$	Built-in	PBR-2007	MSF-4015Z
	2.2	VFASI-4022PL		$\begin{aligned} & \text { DCL-20222 } \\ & \text { Note 3) } \end{aligned}$			
	3.7/4.0	VFASI-4037PL				PBR-4037	MSF-40372
	5.5	VFAS1-4055PL	PFL-4025s	DCL-4110		PBR3-4055	MSF-4075Z
	7.5	VFAS1-4075PL				PBR3-4075	
	11	VFAS1-4110PL				PBR3-4110	MSF-4150Z
	15	VFASI-4150PL	PFL-4050S	Built-in		PBR3-4150	
	22	VFASI-4220PL				P日83	z
	30	VFASI-4300PL	PFL-4100S			PBR3-42еО	MSF-4370Z
	37	VFASI - 4370PL				PBR-417W008	
	45	VFASAS1-44550PL					MSF-4550z
	75	VFASI-4750PL	PFL-4150S				MSF-4750Z
	90	VFASI-4900PC	PFL-4300s	Attached as standard		DGP600W-B2[DGP600W-c2]	-
	132	VFASI-4132KPC	PFL-4400S				
	160	VFAS1-4160KPC					
	200	VFASI-4200kPC	PFL-4600s				
	2го	VFAS1-4220kPC					
	280	VFAS1-4280KPC	PFL-4800s			PB7-4200K Note 2) DGP60W-B4 $[D G P 600 W-C 4]$ -	
	355	VFAS1-4355KPC				PB7-4400k Note 2)DGPGOOW-B3 $\times 2($ parallel	
	400	VFAS 1-4400kPC					
	500	VFAS1-4500kPC	PFL-4613s $\times 2$ (parallel)			PB7-4400K Note 2) DGP600W-B4 $\times 2$ (parallel) [DGP600WW-C4 $\times 2($ parallel $)]$ $\times 2$ (parallel)]	

Note 1) Model in square brackets is fitted with top cove.
Tion with a external braking resistor (DGP600 series), a braking unit (PB7) is also needed.
Note 3) hese reactors are usable for each of 200V Class and 400V class.

Input AC reactor

External dimensions

Fig.A

Connection diagram

In case of using control power supply
backup unit (option)

For 400 V class 355 to 500kN. be sure to
connect the AC reactor in parailel.

DC reactor

For 200 V class 11 to 45 kW and 400 V class 18.5 to 75 kW , DC reactor is built-in standard. Please use these external options when requiring the further improvement of the power factor and reducing harmonics.

\square External dimensions

- Connection diagram

Model	$\begin{aligned} & \text { Rater } \\ & \text { current } \end{aligned}$	Inverter type	Dimensions (mm)							$\begin{aligned} & \text { External } \\ & \text { dimension } \\ & \text { diagram } \end{aligned}$	Terminal	$\begin{aligned} & \text { Aporox. } \\ & \text { weish } \\ & \text { weike } \end{aligned}$			
			w	H	D	\times	Y	d1	d2						
DCL-2007 Note 2)	7A	VFAS1-2004PL.2007PL	92	65	70	82	-	-	-	A	Rinvereminal	1.2			
DCL-2022	14A	VFASI-2015PL.2022PL	86	110	80	71	64	-	-			2.2			
DCL-2037	22.5 A	VFASI-2037PL	86	110	85	71	70	-	-	в	N4	2.5			
DCL-2055	38A	VFAS1-2055PL	75	130	140	50	85	85	55		M5	1.9			
DCL-2110	75A	VFASI-2075PL~VFAS1-2110PM	100	150	150	65	85	95	55	c	M6	2.4			
DCL-22г0	150A	VFAS1-2150PM.2185PM. 2220PM	117	170	190	90	90	130	60		M8	4.3			
DCL-2370	225 A	VFAS 1-2300РM. 2370PM	150	215	200	130	95	135	65		M8	5.9			
DCL-2450	300 A	VFASI-2450PM	150	225	230	130	125	150	80	D	M10	7.8			
DCL1-2550	316 A	VFASI-2550P Note 3)	Refer to external dimension of Inverter.												
DCL1-2750	382A	VFASI-2750P Note 3)													
DCL-2007 Note 2)	7A	VFAS 1-4007PL, 4015PL Note 1)	92	65	70	82	-	-	-	A		1.2			
DCL-2022	14A	VFAS 1-4022PL, 4037PL Note 1)	86	110	80	71	64	-	-	B	M4	2.2			
DCL-4110	38A	VFASI-4055PL.4075PL.4110PL	95	150	165	70	90	105	60		M5	3.0			
DCL-4220	75A	VFASI-4150PL.4185PL.4220PL	105	160	185	80	100	120	65	c	M6	3.7			
DCL-4450	150A	VFASI-4300PL. 4370 PL. 4450PL	150	180	225	120	125	145	80		M8	9.8			
DCL-4750	$225 A$	VFAS 1-4550PL, 4750PL	170	215	230	150	125	150	80	D	м8	11.5			
DCL1-4900	243A	VFAS 1-4900PC Note 3)	Refer to external dimension of Inverter.												
DCLI-4110K	290A	VFAS 1-4110KPC Note 3)													
DCLI-4132K	351 A	VFAS1-4132KPC Note 3)													
DCL1-4160K	486A	VFAS 1-4160KPC Note 3)													
DCLI-4200k	575A	VFAS 1-4200KPC Note 3)													
DCLI-4280K	702A	VFAS 1-4220KPC. 4280KPC Note 3)													

EMC Directive compliant noise reduction filter
For 200 V class 0.4 to 7.5 kW and 400 V class 0.75 to 500 kW , EMC noise filter is built-in standard. Please use these external options depended on the length of the cable between inverter and motor.

Inverter type	Recuirements			
		Length of motor cable(m)		
VFAS 1-2004PL-2022PL	$\begin{aligned} & 4 \\ & \hline 16 \\ & \hline \end{aligned}$	$\begin{gathered} 10 \\ \hline 5 \end{gathered}$	Builtin filer	- -
VFAS 1-2037PL-2075PL VFAS 1-4055PL-4150PL	4	10		
VFAS 1-4005PL-4150]L	${ }^{16}$	$\stackrel{5}{25}$	-	Builtin filter
	16	25		
VFASI-4900PC.4500kPC	2.5	50		

(1) Foot mount type EMC noise filter

Connection diagram

EMC noise
filter

Wosel		Inverer tve	Dimensors (mm										Amox max figiven		
			w	H	D	w1	${ }^{\text {H1 }}$	w2	H2	E	F	。	${ }^{\text {Soune }}$ A A	Soper	
EmF3-4012A	12	VFAS --2004PL~2015PL	130	290	39	105	275	-	275	4.5	11	10	5	35 70	2.5
	26	VFASI --2022PL~2037PL											6	42	3.5
EMF3-4026B		VFAS 1-4037PL	155	324	49	130	309	-	309	4.5	11	10	11	83	
EмF3-4035С	35	VFAS 1-2055PL	175	370	59	150	355	-	355	5.5	11	11	4	25	5.0
EMF3-4035C		VFAS 1-4055PL, 4075PL			59	150		-		5.5	11	IT	6	44	
емF3-40460	46	VFAS 1-2075PL	210	380	59	190	365	-	365	5.5	11	11	12	91 183	6.0
EMF3-4072E	72	VFASI-21 10PM.2150PM	230	498.5	62	190	460	-	79.5	6.6	11	12	25 52	195 390	11
EMF3-4090F	90	VFAS1-2185PM,2220PM VFAS 1-4220PL	240	521.5	79	200	502.5	40	502.5	6.6	11	12	36 70	268 535	15
EMF3-40926	92	VFAS 1-4300PL.4370PL	240	650	79	200	631	40	631	6.6	11	12	70	535	16
EMF3-4180H	180	VFAS 1-2300PM - 2450PM	320	75	119	280	725	80	725	9	18	18	70	537	40

(2) EMC noise filter

Model	$\left.\begin{array}{\|l\|l\|} \hline \text { Rated } \\ \text { curent } \\ \text { (A) } \end{array} \right\rvert\,$	Inverter type
F3-43001	300	VFAS 1-2550P, 2750
		VFASI-4900PC $\sim 4132 \mathrm{KPC}$
EMF3-4600J	580	VFAS 1-4160KPC~4280KPC 4355KPC Note 1), 4400KPC Note 1) 4500KPC Note 1)

Note 1) Be sure to conneat EMC noise filter in parallel.
2) These values are ref

Connection diagram

For 200V $\begin{aligned} & \text { class } \\ & 400 \mathrm{~V} \text { class } 90 \text { to } 75 \mathrm{~kW}, \\ & \text { to } 280 \mathrm{~kW}\end{aligned}$

For 400 V class 355 to $50 \overline{\text { Okw }}$

EMC plate

EMC plate is attached in standard for 400V class of WP1 type up to 18.5 kW .

External dimensions

Model	Inverter type	Dimension (mm)
		H2
EMP101z	VFASI-2004~2015PL VFAS 1-4007~4022PL	55
EMP102z	VFAS 1-2022~2037PL VFAS 1-4037PL	
EMP103z	VFASI-2055PL, 2075PL VFAS1-4055~4110PL	65
EMP104z	VFASI-2110,2150PM VFAS $1-4150,4185 \mathrm{PL}$	
EMP105z	VFAS1-2185,2220PM VFAS 1-4220PL	120
EMP106Z	VFAS 1-4300,4370PL	
EMP107Z	VFASI--2300~2450PM	
EMP108Z	VFAS 1-4450~4750PL	

Motor end surge voltage suppression filter (Only 400V class)

External dimensions

Fig.A	Fig. B (${ }^{\text {a }}$	Fig.C

Connection diagram

- Countermeasure of motor end surge voltage

At the system of operation of the 400 V class motor by the voltage type PWM inverter with using super high-speed switching device(ex.IGBT). the degraatation of insulation of moto constants of the cable.
In this case, the following countermeasures are suggested.

1) Use of the enhanced insulation type of motor

Suppress the surge voltage by AC reactors in the load side or surge suppression fitte

Model	Applicable motor	Dimensions (mm)							External dimension	Terminal screw	Approx. weight
MSF-4015Z	0.4, 0.75, 1.5	${ }^{\text {A }}$	$\stackrel{\text { B }}{ }$	300	200	270	55	${ }^{\text {¢ }} 89$	A	M4	12
MSF-4037Z	2.2. 3.7	310	255	300	200	270	55	209		M4	20
MSF-4075Z	5.5. 7.5	310	315	350	200	320	55	249		M5	30
MSF-4150Z	11. 15	330	350	400	200	370	65	289		M6	40
MSF-4220Z	18.5. 22	330	400	400	200	370	65	279		M6	52
MSF-4370Z	30. 37	426	375	512	260	490	83	350	B	M8	75
MSF-4550Z	45. 55	450	395	632	260	610	95	365		M10	
MSF-4750Z	75	450	415	700	260	678	95	385	c	M10	120

Braking resistor

External dimensions,
connection diagram connection diagram

Fig.E

Fig. F

Braking resistor (DGP600)

Model		Rating	Dimensions (mm) note e)				External dimension diagram	Connection diagram		Approx. weight (kg)
Standard	With cover Note 1)		A/A1	D/D	E/E1	F/F1				
DGP600W-B1	DGP600W-C1	1.7n-3.44k	288/303	207/192	620/700	725/780	G	H	46	50
DGP600W-B2	DGP600W-C2	3.7n-7.44W	493/513	417/402	620/700	725/780			44	100
DGP600W-B3	DGP600w-C3	1.90-8.7kW	703/723	627/612	620/700	725/780			71	150
		2.5n-10.5kW							65	150
		5 n -10kW							45	150
DGP600W-B4	DGP600W-C4	1.4n-14kW	$-913 / 9338$	$837 / 822$	$2620 / 700$	$725 / 780$			110	200
		1.70-10kw							77	200

Fig.G

㦳

Selection of braking resisto

${ }_{\text {lotage }}$		(iverter type	Model								
			Standard type			Hish freauenoy type Note e)					
			P8R	DGP600	Note 4)	500w			35w		Depreot
200 v	0.4	VFASI-2004PL		-	-	$\begin{gathered} \text { PBR-208WO75 } \\ (75 \Omega-540 W) \end{gathered}$	-	-	-	-	
	0.75	VFAS 1-2007PL		-	-			-	-	-	-
	1.5	VFAS 1-2015PL	PBR-2022$(75 \Omega-90 \mathrm{~W})$	-	-	PBR-208wo40$(400.570 \mathrm{~W})$	PBR-217W040		-	-	-
	2.2	VFASI-2022PL		-	-				-	-	-
	3.714 .0	VFASI-2037PL	Prapiosiow	-	-				-	-	-
	5.5	VFASI-2055PL		-	-				Pagatazuo	-	-
	7.5	VFASI-2075PL		-	-	-			${ }^{\text {Palabibebubub }}$	${ }^{\text {Patabigibubu }}$	-
	11	VFAS 1-2110PM		-	-	-		Pararaieimow		Prianabebow	
	15	VFASI-2150PM	$\begin{aligned} & \text { P883:2150 } \\ & \text { (7.50:270w } \end{aligned}$	-	-	-	-				-
	18.5	VFASI-2185PM		-	-	-	-	(7.50.870w)	(7.50.1380w)	(7.50.3210w)	-
	22	VFASI-2220PM	$\begin{aligned} & \text { PBR3.2200 } \\ & (3.30-610 \mathrm{O}) \end{aligned}$	-	-	-	-	-	-		-
	30	VFASI-2300PM		-	-	-	-	-		(3.30.1760w)	
	37	VFASI-2370PM		-	-	-	-	-	-		
	45	VFASI-2450PM		-	-	-	-	-	-	(extarale	come
	55	VFAS 1-2550P				-		-			(1.72-100kM
	75	VFAS 1-2750P		込		-	-	-			
400 V	0.75	VFAS 1-4007PL	PBR-2007(2000-90W)	-	-	PBR-408W160	- -	-			
	1.5	VFAS 1-4015PL		-	-		-	-	-	-	-
	2.2	VFAS 1-4022PL		-	-	${ }_{\text {Pbr-408YO80 }}^{\text {(800:270w) }}$	${ }^{\text {Papata }}$	-	-	-	-
	3.714 .0	VFAS 1-4037PL		-	-		PBR-417W060$(600-1000 W)$	$\underset{\substack{\text { PBR-4260040 } \\ \text { (400.1250W) }}}{ }$	PBR-435WO40(40R-1900W)		-
	5.5	VFAS 1-4055PL		-	-						
	7.5	VFAS1-4075PL		-	-	$-$					-
	15	VFAS 1-4150PL	P8R3-4150 (300-270W)	-	-	-	-				-
	18.5	VFAS 1-4185PL		-	-	-	-	(3008770 ${ }^{\text {a }}$	(300-1680W)	(300:2700w)	-
	22	VFAS 1-4220PL	$\xrightarrow{\text { paparazazo }}$ (150:540w)	-	-	-	-	-	-	P88-452W015	-
	30	VFAS 1-4300PL		-	-	-	-	-	-	(150.1740W)	-
	37	VFAS 1-4370PL	PBR-417woos(8R-1000W)	-	-	-	-	-	-	$\begin{aligned} & \text { PBR-426WO30 } \\ & \times 3 \text { (parallel) } \\ & (10 \Omega-2610 \mathrm{~W}) \end{aligned}$	-
	45	VFAS 1-4450PL		-	-	-	-	-	-		-
	55	VFAS 1-4550PL		-	-	-	-	-	-		Doproomene
	75	VFAS 1-4750PL		-	-	-	-	-	-		(50.108W)
	90	VFAS 1-4900PC	-	DGP600W-B2(3.7 -7.4 kW)	DGP600W-C2$(3.7 \Omega-7.4 \mathrm{~kW})$	-	-	-	-	-	
	110	VFAS 1-41 10kPC	-			-	-	-	-	-	
	132	VFAS 1-4132KPC	-			-	-	-	-	-	
	160	VFAS 1-4160KPC	-			-	-	-	-	-	
	200	VFASI-4200KPC	-			-	-	-	-	-	
	220	VFASI-4220kPC									
	280	VFAS 1-4280KPC	-	PB7-4200K DGP600W-B4 $(1.4 \Omega-14 \mathrm{~kW})$	$\begin{gathered} \text { PB7-4200K } \\ \text { DGP600W-C4 } \\ (1.4 \Omega-14 \mathrm{~kW}) \\ \hline \end{gathered}$	-	-	-	-	-	-
	355	VFAS 1-4355KPC	-	$\begin{gathered} \text { PB7-4400K } \\ \text { DGP600W-B3 } \\ \times 2(\text { parallel }) \end{gathered}$		-	-	-	-	-	-
	400	VFASI -4400kPC	-								
	500	VFAS 1-4500kPC		$\begin{gathered} \text { PB7-4400K } \\ \text { DGP600W-B4 } \\ \times 2 \text { (parallel) } \\ \hline \end{gathered}$		-	-	-	-	-	-

Braking unit

Model	P87-4200k	PB7-4400K
Threshold volage	$785 \mathrm{~V} \pm 1 \%$	
Maximum DC voltage	850 v	
	420kw	750kw

External dimensions
PB7-4200K is mechanically mounted on the eft-hand side of the inverter.

PB7-4400K
Approx. weight 80kg

LCD Remote Keypad

External dimensions

Installation on the panel

LED Remote Keypad

External dimensions

Panel cutout dimensions

\square

LED Remote Keypad:RKPoozz Communication cable (opt
Model:CABOOO $11(1 \mathrm{~m}$)

Heatsink outer option

This options enable the heatsink parts of the backside of inverter that generate much heat to be located at the outside of the panel. This is effective for the small sizing of the totally-enclosed box by reducing the heat values inside the box.

Fig.A

Panel cutout dimensions

 Note) The approx. weight shows the heatsink outer opioio only.

- Panel cutout dimensions

 $\overline{\text { Note) The approx. Weight shows the heatsinhk outer opition only. }}$

To users of our inverters : Our inverters are designed to control the speeds of three-phase induction motors for general industry.

Precautions

* Read the instruction manual before installing or operating the inverter unit and store it in a safe place for reference.
* When using our inverters for equipment such as nuclear power control, aviation and space flight control, traffic, and safety, and there is a risk that any failure or malfunction of the inverter could directly endanger human life or cause injury, please contact our headquarters, branch, or office printed on the front and back covers of this catalogue. Special precautions must be taken and such applications must be studied carefully.
* When using our inverters for critical equipment, even though the inverters are manufactured under strict quality control always fit your equipment with safety devices to prevent serious accident or loss should the inverter fail (such as issuing an inverter failure signal).
* Do not use our inverters for any load other than three-phase induction motors.
* None of Toshiba, its subsidiaries, affiliates or agents, shall be liable for any physical damages, including, without limitation, malfunction, anomaly, breakdown or any other problem that may occur to any apparatus in which the Toshiba inverter is incorporated or to any equipment that is used in combination with the Toshiba inverter. Nor shall Toshiba, its subsidiaries, affiliates or agents be liable for any compensatory damages resulting from such utilization, including compensation for special, indirect, incidental, consequential, punitive or exemplary damages, or for loss of profit, income or data, even if the user has been advised or apprised of the likelihood of the occurrence of such loss or damages.

For further information, please contact your nearest Toshiba Representative or International Operations-Producer Goods. The information in this brochure is subject to change without notice.

TOSHIBA

TOSHIBA CORPORATION Industrial Systems Company

Electrical Apparatus \& Measurement Department International Operations Division
1-1,Shibaura 1-chome, Minato-ku,
Tokyo 105-8001,Japan
Tel.: (03)3457-4911 Fax.: (03)5444-9268
06-12 (AB)8696A AB

